Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 230: 115272, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023550

RESUMO

It is essential to construct a biofuel cell-based sensor and develop an effective strategy to detect glucose without any potentiostat circuitry in order to create a simple and miniaturized device. In this report, an enzymatic biofuel cell (EBFC) is fabricated by the facile design of an anode and cathode on a screen-printed carbon electrode (SPCE). To construct the anode, thionine and flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) are covalently immobilized via a crosslinker to make a cross-linked redox network. As a cathode, the Pt-free oxygen reduction carbon catalyst is employed alternative to the commonly used bilirubin oxidase. We proposed the importance of EBFC-based sensors through the connection of anode and cathode; they can identify a short-circuit current by means of applied zero external voltage, thereby capable of glucose detection without under the operation of the potentiostat. The result shows that the EBFC-based sensor could be able to detect based on a short-circuit current with a wide range of glucose concentrations from 0.28 to 30 mM. Further, an EBFC is employed as a one-compartment model energy harvester with a maximum power density of (36 ± 3) µW cm- 2 in sample volume 5 µL. In addition, the constructed EBFC-based sensor demonstrates that the physiological range of ascorbic acid and uric acid shows no significant effect on the short-circuit current generation. Moreover, this EBFC can be used as a sensor in artificial plasma without losing its performance and thereby used as a disposable test strip in real blood sample analysis.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Glucose/análise , Glucose 1-Desidrogenase , Eletrodos , Glucose Oxidase
2.
Chem Commun (Camb) ; 57(57): 6999-7002, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34159977

RESUMO

A bio-conjugated redox network matrix based on glucose dehydrogenase, thionine (diamine-containing mediator), and poly(ethylene glycol) diglycidyl ether (crosslinker) is developed on a glassy carbon electrode through covalent bonding with one-pot crosslinking. Electrons from the enzyme diffuse through the network producing 400 µA cm-2 of glucose oxidation current at 25 °C.


Assuntos
Técnicas Biossensoriais/métodos , Glucose 1-Desidrogenase/metabolismo , Biocatálise , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/química , Glucose 1-Desidrogenase/química , Oxirredução
3.
Biosens Bioelectron ; 189: 113357, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051384

RESUMO

Glucose level measurement is essential for the point-of-care diagnosis, primarily for persons with diabetes. A disposable electrochemical glucose sensor is constructed using flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) and redox mediator for electron transfer from the enzyme to the electrode surface. Ideally, a suitable mediator should have high water solubility, high kinetic constant, high stability, and redox potential between -0.2 and 0.1 V vs. Ag|AgCl|sat. KCl. We designed and synthesized two new quinone-based water-soluble mediators: quinoline-5,8-dione (QD) and isoquinoline-5,8-dione (IQD). The formal potentials for both QD and IQD at pH 7.0 were -0.07 V vs. Ag|AgCl|sat. KCl. The logarithms of the electron exchange rate constants (k2/(M-1 s-1)) between QD/IQD and FAD-GDH were 7.7 ± 0.1 and 7.4 ± 0.1 for QD and IQD, respectively, which are the highest value among the water-soluble mediators for FAD-GDH reported to date. Disposable amperometric glucose sensors were fabricated by dropping FAD-GDH and QD or IQD onto a test strip. The sensor achieved a linear response up to glucose concentrations of 55.5 mM. The linear response was obtained even when the mediator loading was low (0.5 nmol/strip); loading was only 0.2 mol% of glucose. The results proved that the response current was primarily controlled by glucose diffusion. In addition, the sensor using QD exhibited high stability over 3 months at room temperature.


Assuntos
Técnicas Biossensoriais , Glucose 1-Desidrogenase , Flavina-Adenina Dinucleotídeo , Glucose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...